	


Appendix K

Support Architecture Section — NDIIP ADAPT

	


K.
Support Architecture Section—NDIIP ADAPT

K.1
Overview

The objective of preserving resources is to ensure that they remain accessible for current and future generations. Digital materials, whether “born digital” or converted to digital form, are at risk from: 

· Technological obsolescence.
· Physical deterioration of storage media.

· The ease with which changes can be made, which poses a threat to authenticity.

· The dynamic nature of some “born digital” materials, i.e. those that are intended to be continually updated.

· The lifecycle of a website.

· The question of whether and/or how to preserve originals. 
Preservation issues must be considered an integral part of the digital creation process, because much critical information and metadata can be captured only at the point of creation. As well as a technical strategy, an organisational strategy is useful in order to ensure budgets; staff and time are available for what should be an ongoing procedure. 

K.2
GOOD PRACTICE GUIDELINES

A key initial decision which needs to be made concerns selection, i.e. which resources justify preservation. Once the selection of material has been made, an appropriate technical strategy must be chosen, e.g. technology preservation, technology emulation, or data migration. The choice of preservation strategy will be influenced by how authentic the preserved item needs to be. 

Strategies for both online and offline storage will be needed, taking into account access requirements. A disaster recovery plan and risk management policy is also advisable. 

It is advisable to adhere to open standards for formats and media when archiving digital resources to ensure interoperability and to guard against the dangers of technological obsolescence. 

K.3
ADAPT Architecture and Main Components
A traditional archiving and preservation approach has been a distributed activity in which each organization maintains and preserves its holdings with relatively little sharing. Such an approach is based on well understood and proven processes for archiving and preserving physical holdings. Digital preservation seems to be substantially more complex due, on one hand, to the ease with which digital information can be created and disseminated, and, on the other hand, the fast pace of technology evolution and the fragility of digital information and computing environments. Add to that the security and privacy threats facing digital information connected to the internet.

A digital preservation infrastructure (Architecture) must be able to handle the following requirements:

· Each preserved digital object must contain sufficient information to enable the application of long term preservation policies and to handle its lifecycle management. 

· Efficient management of technology evolution, both hardware and software, and in particular, the handling of technology obsolescence. 

· Efficient risk management and disaster recovery mechanisms either from technology degradation and failure, or natural disasters such as fires, floods, and earthquakes, or human-induced operational errors. 

· Efficient mechanisms to ensure the authenticity of content, context, and structure of archived information throughout the preservation period. 

· Ability for information discovery and content access and presentation, with an automatic enforcement of authorization and security policies, throughout the lifecycle of each object. 

· Scalability in terms of ingestion rate, capacity, processing power and the speed at which users can discover and retrieve information regarding context. 

This technology approach is based on a number of premises, most of which have been described by other researchers. The first premise is to encapsulate properties of content, structure, context, presentation, and preservation within digital object architecture, and enable the infrastructure to manage and preserve these objects. The digital object must contain the essential features that capture what is being preserved, and should include behavioural information about its lifecycle management and preservation. Working with the NARA EAP collection and the GLCF collections, we have developed an elaborate object model using and extending METS (Metadata Encoding and Transmission Standards) to encapsulate content, context, structural, descriptive, and preservation metadata into our digital objects. 

The second premise of the ADAPT architecture is to separate the management of the digital objects into three levels of abstraction, resulting in a well-defined three-layered architecture. The data layer is responsible for managing the bits representing the digital object across storage systems (possibly evolving through both time and space), while the second layer deals with the semantics of the data rather storage and bits. The third layer enables information discovery, search, access, and presentation of the requested digital objects. Such an approach has been advocated through the archives project using the SRB data grid technology. We have further abstracted and refined these layers so that other data grid, peer-to-peer, grid services, or digital library technologies can be easily substituted. In fact, the grid, database, peer-to-peer, and semantic web technologies are fast evolving and hence the need for the abstraction and the clean separation between the layers. In addition, we believe that the data layer should include support for a deep archive to serve as the ultimate recourse for lost data. In this project, we will show how to incorporate an independent archive using peer-to-peer technologies.

The last cornerstone of the ADAPT architecture is that long term digital preservation needs to be organized as a collaborative endeavor to leverage infrastructure support, share resources and knowledge, and develop community-based efforts (such as the effort for setting up a Global Digital Format Registry). In preserving digital assets of interest to significant communities, we advocate a distributed archive infrastructure in which some resources can be combined to enable replication, distributed storage (say, to build a distributed deep archive), or "community-certified" software sharing (such as conversion from one format to another). The involvement of trusted entities will simplify the preservation process and ensure the overall reliable and secure operation of the infrastructure.

Finally, our referenced Approach to Digital Archiving and Preservation Technology (ADAPT) borrows considerably from the Open Archival Information System (OAIS) reference framework, including overall terminology. This model seems to be widely accepted; however, as far as we can tell, none of the known prototypes, outside our ingestion software PAWN, seem to capture the core elements of this model adequately. 

Based on the approach outlined in the overview, we have developed an architecture whose main components are: Layered Archive Infrastructure, Producer - Archive Workflow Network (PAWN), Management of Preservation Processes (MPP), and Consumer - Archive Network (CAN). The architecture is illustrated in the following - Figure 1.

[image: image1.png]
Figure 1

We advocate a distributed archive infrastructure whenever the digital assets are of interest to significant communities. We now clarify what we mean by a “distributed archive infrastructure.” For our purposes, an archive refers to a consolidation of the data of an enterprise onto storage systems with a centralized metadata management system. The storage systems themselves may be managed under a single administrative domain as is typical for digital libraries, or managed across widely distributed administrative domains, as is the case in a data grid environment. By distributed archive, we refer to the federation of a number of archives across the layers shown in Figure 1. Such federation can range from a loose federation, say implemented through peer-to-peer technologies, to a tightly coupled federation, say implemented through federated data grid technologies. Distributed archives have a number of significant advantages, including better scalability, increased redundancy, higher reliability (since systems and security failures are typically uncorrelated, especially when dealing with loosely coupled, heterogeneous systems), and overall lower cost because of the possibility of resource sharing.

K.4
Layered Archive Infrastructure

The main elements are the following:

· Data Management—This software layer manages the data (bit streams) stored across the storage systems, and assigns a unique identifier to each digital object (this can be made globally unique by using cryptographic hashing or through a naming service). Our current pilot persistent archive uses the SRB for data management at each site, and a federated SRB version to manage and replicate data across the sites.

· Information Management—This software will manage descriptive, preservation, and administrative metadata, and will make use of indexing schemes to support fast access to the data. We are currently using the MCAT (Metadata CATalog) of the SRB for the pilot persistent archive and a geospatial metadata database (based on Informix) for the GLCF. A federated version of MCAT is used to manage information across the three sites of our pilot persistent archive.

· Deep Archive—We assume that each archive has set aside some storage for a deep archive, which can only be accessed by administrators. In this project, we propose to design and build a peer-to-peer distributed deep archive that will achieve a cost-effective, highly reliable, and secure repository, and will operate independently of the rest of the infrastructure. The security and reliability offered by such a design can be quantitatively shown to be substantially superior to alternative designs. 

· Security Management—This component is responsible for setting up and managing the overall security infrastructure of the archive, which include support for secure authentication and access, secure ingestion, and secure preservation management. Distributed archives will be handled through distributed trust management, assuming autonomous security infrastructure for each archive. Our current persistent archive prototype is built around the Grid Security Infrastructure (GSI) and uses X.509 security certificates and public-key encryption. 

K.4.1
Producer - Archive Workflow Network (PAWN)

This component, fully developed and tested, captures the interactions between the producer and the archive and enables automated secure ingestion of digital objects into the archive. Long-term preservation begins when the object is created, and hence the details of this step are crucial to the lifecycle management of the digital objects. PAWN uses METS to encapsulate content, structural, context, descriptive, IP and access rights, and preservation metadata. PAWN supports either the push model (producers prepare and push data into the archive) or the pull model (the archive pulls the data from producers), and its architecture is illustrated in Figure 2. 

PAWN consists of three major software components: management server at the producer; client at the producer; and receiving server at an archive (distributed management and receiving servers for distributed producers and archives). We assume the most general case in which a number of people at the producer will be engaged in preparing and transferring data into the archive. The management server will act as a central point for the initial organization of the data, and for tracking bit-streams and metadata functionality. More specifically, this server performs the following functions:

· It provides the necessary security infrastructure to allow secure transfer of bit-streams between the producer and the archive.

· It assigns a unique identifier for each bit-stream to be archived, which is unique within a collection, but not globally unique.

· It provides an interface for bit-stream organization and metadata editing.

· It accepts checksums/digital signature, system metadata and other client supplied descriptive metadata.

· It tracks which bit-streams have been transferred to the archive.

[image: image2.png]
Figure 2

A client will run on each machine to automatically register preservation information and transfer the corresponding Submission Information Packets (SIPs), as defined by the OAIS model, into the archive. The client will be responsible for:

· Bulk registration of bit-streams, checksums and system metadata.

· Assembly of a valid SIP.

· Transmission of SIP to the archive either directly or through a third party proxy server.

· Automatic harvesting of descriptive metadata (e.g., e-mail headers) as necessary. 

The archive will have a server setup to receive data transferred from the producer. This server will accept data and initiate verification/validation processes on the bit-stream. Some security key negotiation between all three areas may be necessary for the producer to securely transfer documents to the archive. The receiving server will need to do the following:

· Securely accept SIPs from clients at a producer site.

· Process SIPs and initiate verification/validation processes.

· Coordinate authentication with the management server at the producer site.

· Verify with the management server that all SIPs have arrived intact.

· Provide enough temporary storage for incoming SIPs until they can be replicated into a digital archive and validated.

The overall security architecture of PAWN is based on open standards (PKI, X.509, and GSI - Grid Security Infrastructure) and distributed trust management. It enables mutual authentication, confidential communication, and requires no or minimum user intervention. Since we assume minimal operational trust between an archive and producer, we allow for each party to manage security locally.

K.5
NDIIPP Architecture 

This section outlines the current state of thinking on the Technical Architecture for the National Digital Information Infrastructure and Preservation Programme (NDIIPP), following a period of review from April to July 2003. The architecture has been reconsidered to take into account the need for interfaces between institutions to export and import not only digital objects but also whole collections and for institutions to be able to perform different roles in the system at the same time. We believe that this document will serve as the basis for conversations between the Library and other preserving institutions as we move into the execution phase of DAP, and we do not doubt that there will be further articulation of architecture as a result of real-world experience gained during these efforts.

K.5.1
Core Characteristics

A key attribute of the NDIIPP architecture is that it provides a bridge between disparate conceptual domains encapsulated by various existing and future systems. To do this, we believe that it must have two characteristics: 

First, it must describe the minimal set of functions required for digital preservation in such a way that existing systems can be mapped onto the architecture and vice-versa. A survey of the existing literature makes it clear that, although there is a common subset of functions required for preserving digital materials, the arrangement and even the names of those functions differ from system to system. The architectural model of the NDIIPP is not intended as a complete alternative version of existing systems. Instead, it is a kind “minimum requirement” set, designed to allow the Library to evaluate and compare real-world solutions. 

Second, it must not over specify. Any complete system for digital preservation will have functions specific to the content or format of the material it is preserving (e.g., scholarly journals, digital films), as well as processes for supporting community-specific goals (e.g., evidentiary provenance, scholarly annotation). A system that attempted to be a superset of all such functions would be hopelessly bloated. A system that adopted one complete specification to the exclusion of others would not be sufficiently general to account for all the cases in which the Library has an interest.

This document attempts to describe the common functions and relationships necessary to describe the systems of preserving institutions that want to work cooperatively. It can be thought of as a kind of contractual rider, setting out a minimum understanding between two parties who are going to share the effort of digital preservation. 

K.6
Terms

There are a handful of terms used in this document that serve as technological primitives on which higher-order definitions will be built. These terms are briefly noted here and defined in some detail in Appendix A of this document:

· Identifier—A label for an object within the system. It does not necessarily specify a location of content within the system. An ISBN is a type of identifier. 

· Pointer—A reference to an identifier. A URL is a type of pointer. 

· Object—Anything stored in the system that has a pointer. 

· Unit—The smallest kind of object contained in the system. A unit is an object that contains no other objects (analogous to a file in a file system). 

· Container—An object that contains other objects, whether units or other containers or both (analogous to a folder in a file system).

At the left, digital material passes into a preserving institution, whether the material was donated by a person or institution or automatically accessed as with a Web crawl. In the center are the functions of the preserving institution or institutions. On the right is the export of material from the preserving institution outward. Note that this export can be in frequent small batches or in periodic snapshot exports of an entire collection. Note also that the architecture assumes that data is exported in a format that packages the object with some additional metadata.  Down the center of the diagram are the functions of a preserving institution.

K.7
Descriptions of Layers 

K.7.1
Lower 

At the Lower layer are the services required for storage, verification, and retrieval of digital objects, as defined above, whether for containers or units. A unit is assumed to be a digital object accompanied by at least some of its metadata. It is also assumed that the “halo” of metadata around an object will grow over time (indicated by the dotted-line container) as additional interpretive or provenance data is registered. 

[image: image3.png]
Architectural Diagram Version 0.2

The Lower layer is a group of functions, but is not necessarily an integral piece of technology. The object access interface presents a coherent view of the stored objects, but beneath that interface data can be stored in a number of distributed or virtualized ways. A database, for example, may well be able to present a combined view of data and metadata, but it may store the various elements in separate tables on separate disks. Likewise, the de-referencing of pointers to IDs that specify physical location of digital material may go through several layers of redirection if the files are stored in multiple copies or chunks on decentralized and geographically dispersed systems (e.g., LOCKSS or OceanStore). 

K.7.2
Middle 

The Middle layer contains five functional categories: 

· Ingest—The functions required for the transfer of responsibility for the preservation of digital data to a particular organization, including both the acceptance of digital materials and the creation of any contractual or administrative agreements. 

· Pointer Management—The creation or registration of pointers for the digital objects being preserved. Pointers point to digital objects stored in the Lower layer. 

· Metadata Management—The creation and management of metadata for the digital objects being preserved. (Note that at least some metadata will be stored with the object itself). At a minimum, this metadata will include or point to as much detail as possible on making the object available for interpretive use – file format, conditions of creation, playback software, etc. Note that the metadata can be stored by other institutions, including third-party service providers, as well as by the hosting institution. 

Note also that additional metadata will be developed over time, in forms ranging from additional management or scholarly annotation to administrative notes related to the management of the object.

· Life-Cycle Management—The set of operations required to make digital data fit for use over the passage of time, including the transfer of copies of the original objects in bit-identical format onto new storage media; the migration of objects to new formats; the documentation of emulation strategies for playing back older data on newer software; and the export of objects, which entails the possible transfer of metadata and of preservation responsibility, if it is contractually agreed upon, to other preserving institutions. 

· Views—The Views function essentially plays a gatekeeper role for the provision of access to the objects, filtered through whatever policies or restrictions are placed on their use (available internally only or available to other institutions), any particular file transformations that are allowed or disallowed, etc. 

This is not to say that functions in the Upper or Lower layers cannot also be coupled with these functions in a single organization or even on a single machine, nor is it to say that additional functions cannot be deemed essential by individual organizations. These functions are grouped together because they are essential and relatively difficult to decouple – ingest requires both pointer and metadata management; meta-data must be associated with objects identified by pointers; life-cycle management operates on objects identified by pointers and generates new metadata; and so on. 

The five categories in the Middle layer encapsulate a wide range of functions – any working system will have to break out those functions in more detail. However, a survey of the literature suggests that the next level of detail is where existing systems begin to diverge. 

In the realm of metadata management, for example, the OAIS reference model refers to Preservation Description Information, comprising Provenance, Reference, Fixity and Context Information. METS, by contrast, categorizes metadata into three categories, descriptive, administrative, and structural, with administrative metadata further subdivided into source, technical, intellectual property and provenance metadata. Thus, the five functions listed here are an attempt to outline minimal required functions while providing a description sufficiently general to apply across a range of practical implementations. 

K.7.3
Upper 

The Upper layer comprises access by any person or institution to data or metadata through the Views function of the Middle layer. There are two broad categories in the Upper layer – internal access and external access. Internal access describes any human views of the system required for management of the material, from creation of descriptive metadata to spot checks for validity or interpretability of the content.

As in the 0.1 architecture, the Upper layer is minimally and mostly negatively defined. Because the Middle layer is where the hard work of maintaining enough metadata to allow the object to be reconstituted lies, the principal requirement of the Upper layer, whether through internal or external access, is to provide some form of trustworthy mediation for potentially untrustworthy users, in the case of sensitive or restricted materials and, in any case, not to violate any legal or administrative controls set upon the data. 

K.7.3.1  Relationship Between Interfaces and Layers 

As with any system designed around nodes and connections, the 0.2 architecture can also be viewed in an interface-oriented fashion. The drawing below presents the system as a set of four interfaces arranged around the Middle layer – Import, Storage, Access and Export – representing the possible interfaces a preserving institution might have with the outside world. 

[image: image4.png]
These four interfaces all have related functions within the Middle layer: Import/Ingest, Storage/Pointers, Access/Views, and Export/Life cycle. These interfaces are labeled from the point of view of the center institution, but the functions are arranged in parallel: one institution’s Export function connects to another’s Import, and one institution’s Access function connects to another’s Storage. 

This view, while related to the function-centric view above, highlights systemic aspects of NDIIPP:

· Interface definitions between institutions are a critical feature of a working system. 

· The functions taken on by preserving institutions are complex but largely opaque. The complexity of managing a digital collection internally is (or should be) hidden from the outside world. 

· Any institution can perform multiple functions within the system. In a scenario whereby institution A accesses content held by institution B, B is a de facto Lower layer for A, even if B also offers direct access to the same material. There is no theoretical upper limit to this sort of redirection, though practicality suggests that most transactions will involve three or fewer institutions. 

· Likewise, an institution can import content from other institutions and export it to other institutions. 

· Vertical interfaces – access and storage –work relatively well in current systems and have analogs in everything from networked file systems to the Web and Web Services architectures. 

· Horizontal interfaces currently work less well. Ingest in current systems tends to be human-intensive and therefore expensive for bulk accessioning of data. Likewise, the ability to export a complex collection of digital objects in an archival format is limited, and an important area of future work. 

The most important design principle of the interface view of the system is that, although the functions are divided into three layers, the system as a whole is an N-layer system, because it is impossible to specify in advance how participating institutions will stand in relation to one another over time

K.8
Conclusion 

Though the proposed 0.2 version of the NDIIPP architecture preserves the basic design principles the goal of a modular and protocol-connected architecture, the 0.2 version is simultaneously simpler and more detailed: simpler because the decision not to over specify metadata management and the subsequent removal of the Gateway layer make the conceptual units of the system easier to understand and to map to existing efforts; more detailed in that the functions within the layers, and especially the Middle layer, are better specified. 

K.9
Terms

There are a few terms used in this document that serve as technological primitives, on which higher-order definitions will be built. 

Identifier—A globally unique and persistent label for an object within the system. It does not necessarily specify a location of content within the system. An ISBN is a type of identifier. 

Pointer—A reference to an identifier. A URL is a type of pointer. Note that sometimes Identifiers and Pointers can be identical, as when a URI that is also a URL, while in other cases they can be separate; isbn.nu uses ISBNs in its URLs, but an ISBN is different from an isbn.nu URL. The critical point is that a digital object must not just be labeled; there must be some way to refer to that object remotely, through one or more pointers.  Every functional system must provide a method of de-referencing pointers to the identifiers (and thus to the objects) it is responsible for preserving, even if that de-referencing goes through layers of redirection. Version control can be, but is not required to be, part of the identifier/pointer system. An identifier or a pointer can include explicit methods of version control by providing operations such as incrementing or decrementing counters or alternating MIME types to access other versions of the "same" object, or the pointers to earlier versions can be stored elsewhere in the metadata of the object referenced by the pointer.  The current architecture is mute on this question not because it is unimportant, but because we do not believe that there is general agreement on the versioning issue among extant systems. Part of the next phase of NDIIPP work will be to experiment with strategies for version control. 

Object—An entity in the system with a pointer. The two types of objects are units and containers. These are roughly analogous to files and directories, with the key difference being that there is no required “root” object. 

Unit—The smallest object contained in the system. A unit is an object that contains no other objects, though it may contain pointers to other objects, e.g., a Web page that has pointers to images. 

Container—An object that contains other objects, whether units or other containers or both. A container can be as tightly coordinated as a file that includes embedded images and as large as a container-of-containers that encompasses the entire holdings of an institution. There is no mandated “root” container and no upper limit to the number of layers of containment possible.

The goal is to know, in principle, what is contained in a container. When containers are imported or exported, they may travel with their contained contents (including, of course, other containers) or they may simply be passed as metadata (and updated pointers, if needed), with the bulk of the contained objects being left in place. 

Note that managing Web pages is particularly problematic, as Web pages embed other first-order objects with URLs (as with images or the content of frames), rather than direct inclusion, as with a PDF. Web pages are therefore unbounded as objects, even in principle, as they can always point to new resources for inclusion. Further work is needed to know whether to treat Web pages as units, containers or as a special third category.





































[image: image5.png]Page 2

